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Breast cancer is the most common type of cancer in wom-
en. In addition to conventional approaches such as sur-

gery, chemotherapy, and radiotherapy to treat breast can-
cer, new alternatives are emerging every day and the most 

prominent of these is immunotherapy. Mutations that occur 
in tumor cells cause them to be identified and eliminated by 
immune cells. However, the immune evasive adaptations 
acquired in addition to these mutations dramatically reduce 

Objectives: In this study, it was aimed to investigate how the effects of Mesenchymal stem cells (MSCs) on the anti-
tumor properties of NK-92 cells change with programmed death-ligand-1 (PD-L1) blocking antibodies.
Methods: NK-92 cells were co-cultured with MDA-MB-231 breast tumor cells and MSCs. To evaluate the effect of anti-
PD-L1 antibodies, cells were cultured for 48 hours with and without the addition of 1, 5, and 10 µg/ml anti PD-L1 
antibody. IFN-γ, TNF-α, IL-10 and IDO levels of medium supernatants were determined by ELISA. CCK-8 kit was used to 
evaluate cytotoxic activity.
Results: IFN-γ and TNF-α expressions of NK-92 cells co-cultured with MDA-MB-231 increased significantly, but this 
increase was significantly decreased in culture groups with MSCs. IDO expressions increased significantly in co-culture 
groups with MSCs only. Cytotoxic effects of NK-92 cells were significantly reduced in culture groups with MSCs. How-
ever, the suppression effects caused by MSCs improved in the presence of anti-PD-L1 antibodies and in a dose depen-
dent manner.
Conclusion: In our findings, we found that MSCs are a highly effective inhibitors, and the IDO enzyme they secrete may 
play a major role in this. However, the suppressive effects caused by MSCs may be significantly improved by blocking 
the PD-1/PD-L1 axis.
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the effectiveness of immune elimination.[1] Self-tolerance 
mechanisms are triggered by bioactive molecules secreted 
on tumor cell surfaces or in the environment, and the ef-
fects of anti-tumor cells such as cytotoxic T lymphocytes 
(CTLs) and natural killer (NK) cells are suppressed. Inhibitory 
cell surface molecules such as programmed death-ligand 1 
(PD-L1), CTLA-4 (cytotoxic T-lymphocyte-associated protein 
4), human leukocyte antigen G (HLA-G) and TIM3 (T-cell im-
munoglobulin domain and mucin domain 3) effectively sup-
press immune cells.[2,3] Apart from direct cell contact, there 
are molecules that affect immune cells by paracrine mech-
anisms. In addition to suppressing cytokines such as inter-
leukin (IL)-10 and transforming growth factor beta (TGF-β), 
enzymes such as indoleamine 2,3-dioxygenase (IDO) that 
metabolize tryptophan, which is critical for T cells, dramati-
cally reduce immune cell activation. The kynurenine, form-
ing from the interaction of tryptophan with IDO, is a potent 
activator of aryl hydrocarbon receptors (AHRs) in regulatory 
T (Treg) lymphocytes, thereby enhancing the effectiveness 
of immune-inhibition.[4,5] Thanks to antibodies that block im-
mune checkpoint molecules such as PD-1, PD-L1 and CTLA-
4, therapeutic alternatives that provide immune elimination 
of tumor cells are gaining increasing popularity.[6] However, 
despite these superior effects, the rate of patients benefiting 
from the treatment remains at 20-30%.[7,8]

Tumor tissue is a microenvironment made up of cells of dif-
ferent origins in addition to tumor cells. Cells such as tumor-
associated macrophages (TAMs), Treg and myeloid derived 
suppressor cells (MDSCs) are of immune origin, cancer-as-
sociated fibroblasts (CAFs) and mesenchymal stem/stromal 
cells (MSCs) are of somatic origin. Although these cells have 
different contributions in tumor progression, the common 
effects of all are inhibition of immune cells.[9,10] Among 
these cells, MSCs stand out with a different feature. MSCs 
are cells that suppress T and B lymphocytes, macrophages, 
and NK cells non-selectively and non-specifically thanks to 
their strong immunomodulation properties.[11–14] In addi-
tion to the molecules they secrete such as IL-10, TGF-β, IDO 
and PGE2, inhibitory checkpoint molecules such as PD-L1 
and HLA-G play a critical role in the emergence of these ef-
fects.[15] For this reason, MSCs are used in the treatment of 
many autoimmune diseases such as systemic lupus erythe-
matosus, multiple sclerosis, and Crohn's disease, especially 
acute graft-versus-host disease resistant to steroids, which 
can be fatal.[16] Having such strong immunosuppressive 
properties, the effects of MSCs on the tumor microenviron-
ment stand out as an important target that needs to be 
investigated. In this study, we aimed to demonstrate how 
PD-L1 blocking affects the anti-tumor effects of NK cells on 
breast tumor cell lines and how these changes in the pres-
ence of MSCs.

Methods

Cell culture
Human adipose tissue MSCs, human breast tumor cells 
MDA-MB-231 and NK-92 cells were purchased from the 
American Type Culture Collection. MSCs and MDA-MB-231 
cells were cultured by using Dulbecco’s Modified Eagle’s 
Medium F12 (Biosera, USA) medium that including 10% 
fetal bovine serum (FBS) (Biosera, USA), 100 U/ml penicil-
lin, 100 μg/ml streptomycin (Biosera, USA) and 1% 2 mM 
L-glutamate (Biosera, USA) at 37°C and 5% CO2 incubator. 
NK-92 cells were cultured by using Minimum Essential Me-
dium Eagle- Alpha Modification (Biosera, USA) that includ-
ing 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 
1% 2 mM L-glutamate and 500 IU/ml IL-2 (Proleukin®, Pro-
metheus Theraputics, USA) at 37°C and 5% CO2 incubator.

NK-92 cells were activated by culturing in medium contain-
ing cytokines 500 ng/ml IFN-α (Reprokine, Israel), 500 IU/ml 
IL-2 (Proleukin®, Prometheus Theraputics, USA) and 50 ng/
ml IL-15 (Reprokine, Israel) for 24 hours. 5x104 MDA-MB-231 
cells were seeded in appropriate wells of 24 well culture 
dishes. Shortly after MDA-MB-231 and NK-92 cells were co-
cultured at a ratio of 1:10, and MSCs, MDA-MB-231 and NK-
92 cells were co-cultured at a ratio of 1: 1: 10. To evaluate 
the effect of anti-PD-L1 antibodies, cells were cultured for 
48 hours with and without the addition of 1 µg/ml, 5 µg/
ml and 10 µg / ml polyclonal goat PD-L1 IgG antibody (R&D 
Systems, USA).

Flow Cytometry
Flow cytometry analyzes were performed using FITC fluo-
rescently labeled CD69 (Clone: FN50; Biolegend, USA) and 
CD107a (Clone:H4A3; Biolegend, USA) antibodies to ob-
serve the activation status of NK-92 cells. Phycoerythrin 
(PE) labeled anti human CD274/PD-L1 antibody (Clone: 
29E.2A3, Exbio, Czech Republic) was used to evaluate 
PD-L1 expression of MSCs and MDA-MB-231 cells. Fluo-
rescence changes were detected with NovoCyte 2060R 
(Aligent, USA) device and analyzes were performed with 
FlowJo V.10 software (BD, USA).

ELISA
Medium supernatants were collected after cell culture in-
cubations were completed. Supernatants were centrifuged 
at 4000 rpm for 10 min to remove the cells. Alterations in 
IFN-γ (Cat# 950.000.192 Diaclone, France), TNF-α (Cat# 
950.090.096 Diaclone, France), IL-10 (Cat# 950.060.192 Di-
aclone, France) and IDO (Cat# KTE62917 Scientific, China) 
levels were determined by ELISA method. Absorbance 
changes were detected with the Multiskan ™ FC Microplate 
Photometer (Thermo Fisher Scientific, USA).
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Cytotoxicity
Cell proliferation assays were performed with Cell Count-
ing Kit-8 (Cat # KTC011001 Abbkine Scientific, China) to 
observe activation of NK-92 cells and their killing activity 
against tumor cells. For this, 5x103 cells of MDA-MB-231 and 
MSCs were seeded separately into the appropriate wells 
of the 96-well culture dish. MDA-MB-231 and MSCs were 
seeded at 5x103+5x103 cells for co-culture and cultured for 
24 hours to attach. Meanwhile, NK-92 cells were activated 
with cytokines of 500 ng/ml IFN-α, 500 IU/ml IL-2, 50 ng/ml 
IL-15. At the end of the culture, 5x104 activated NK-92 cells 
were added onto the adherent cells, which were cultured 
single and together. To evaluate the effect of anti-PD-L1 an-
tibodies, cells were cultured for 24 hours with and without 
the addition of 1 µg/ml, 5 µg/ml, and 10 µg/ml polyclonal 
goat PD-L1 IgG antibody (R&D Systems, USA). After 24 
hours of co-culture, the NK-92 cells were removed and 10 
μl of Cell Counting Kit-8 was added to each well with fresh 
medium and cultured for 4 hours. Color changes at the end 
of the culture were detected at 450 nm using an ELX800 
microplate reader.

Statistic
Each experiment was repeated three times. Prism v7 
(GraphPad, CA, USA) program was used for statistical 
analysis of the data obtained from the experiments. First, 
whether the data had a normal distribution or not was de-
termined by Shapiro-Wilk test. Groups with normal distri-
bution were analyzed using the parametric method and 
the One Way Anova statistical method. Values of p<0.05 
were considered statistically significant.

Results

Flow Cytometry
In flow cytometry analysis, we found that the PD-L1 posi-
tive cell frequency of AD-MSCs was 54.16±1.05 % and 
MDA-MB-231 was 19.66±2.99 %. After cytokine stimulation 
of NK-92 cells, we found that CD69 (p<0.005) and CD107a 
(p<0.01) median florescent intensity values, which are ac-
tivation markers, increased significantly. Histogram graphs 
obtained from flow cytometry analyzes are presented in 
Figure 1.

ELISA
IFN-γ expression of NK-92 cells co-cultured with MDA-
MB-231 cells increased significantly independent of an-
tibody administration (without anti PD-L1 p<0.001, for 1 
µg/ml p<0.001, for 5 µg/ml p<0.001, for 10 µg/ml p<0.001 
respectively). However, in the presence of MSCs, IFN-γ ex-
pressions were significantly decreased in all groups (with-

out anti PD-L1 p<0.001, for 1 µg/ml p<0.001, for 5 µg/ml 
p<0.001 respectively) except for the 10 µg/ml antibody 
dose (p>0.99). Similarly, TNF-α expression of NK-92 cells co-
cultured with MDA-MB-231 cells increased significantly in-
dependent of antibody administration (without anti PD-L1 
p=0.002, for 1 µg/ml p=0.03, for 5 µg/ml p<0.001, for 10 µg/
ml p<0.001 respectively). However, in the presence of MSCs, 
TNF-α expressions were significantly decreased in without 
PD-L1 (p<0.001), and 1 ug/ml dose (p<0.001). There was no 
significant difference at the 5 µg/ml dose (p>0.99), but a 
significant increase at the 10 µg/ml dose (p<0.001). IL-10 
expression of NK-92 cells cultured with MDA-MB-231 was 
significantly decreased at all doses (for all groups p<0.001). 
IL-10 expressions were significantly decreased in all groups 
also in the presence of MSCs (for all groups p<0.001). In-
terestingly, IL-10 expression of NK-92 cells was significantly 
suppressed at all doses in the presence of MSCs compared 
to NK-92 cells cultured with MDA-MB-231cells alone (for all 
groups p<0.001). IDO expressions in NK-92 cells cultured 
with MDA-MB-231 cells without PD-L1 (p>0.99), and 1 
µg/ml (p=0.70) antibody doses did not show a significant 
change, however, there was a significant increase at the 5 
µg/ml (p=0.03) and 10 µg/ml (p=0.003) doses. There was 
a significant increase in IDO expressions at all doses in the 
presence of MSCs (for all groups p<0.001).

We observed that 1 µg/ml, 5 µg/ml, and 10 µg/ml PD-L1 
antibody applications did not significantly change the 
IFN-γ (for 1 µg/ml p>0.99, for 5 µg/ml p>0.99, for 10 µg/ml 

Figure 1. Histogram graphs obtained from flow cytometry analysis. 
Comparison histograms of adipose derived mesenchymal stem cells 
(AD-MSCs) and MDA-MB-231 tumor cells analyzes made from three 
different cell cultures and positive for CD274/PD-L1 (a). Histograms 
of CD69 and CD107a expression of NK-92 cells (b).

a b
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p>0.99 respectively) TNF-α (for 1 µg/ml p=0.43, for 5 µg/ml 
p>0.99, for 10 µg/ml p=0.52 respectively), IL-10 (for 1 µg/
ml p>0.99, for 5 µg/ml p>0.99, for 10 µg/ml p>0.99 respec-
tively) and IDO (for 1 µg/ml p>0.99, for 5 µg/ml p>0.99, for 
10 µg/ml p>0.99 respectively) expressions of NK-92 cells. 
IFN-γ expression of NK-92 cells cultured with MDA-MB-231 
cells did not change significantly with 1 µg/ml (p>0.99) and 
5 µg/ml (p=0.07) PD-L1 antibody, but a significant increase 
occurred with 10 µg/ml (p<0.001). TNF-α expression of NK-
92 cells cultured with MDA-MB-231 cells did not change 
significantly with 1 µg/ml PD-L1 antibody (p=0.97), but a 
significant increase occurred with 5 (p<0.001) and 10 µg/
ml (p<0.001). In contrast, IL-10 expressions were not signifi-
cantly altered with 1 µg/ml PD-L1 antibody (p>0.99), but a 
significant reduction occurred with 5 (p=0.04) and 10 µg/
ml (p<0.001). PD-L1 antibodies did not have a significant 
effect on IDO expression of NK-92 cells co-cultured with 
MDA-MB-231 (for 1 µg/ml p>0.99, for 5 µg/ml p=0.23, for 
10 µg/ml p=0.06 respectively). IFN-γ, TNF-α and IDO ex-
pressions of NK cells co-cultured with MSC and MDA cells 
did not change with 1 µg/ml PD-L1 antibody (p>0.99, 
p>0.99 and p=0.75 respectively), but administration of 5 
µg/ml (p<0.001, p=0.003 and p<0.001 respectively) and 10 
µg/ml (p<0.001, p<0.001 and p<0.001 respectively) anti-
body led to a significant increase. In contrast, IL-10 expres-
sions were not significantly altered with 1 µg/ml PD-L1 an-
tibody (p>0.99), but a significant reduction occurred with 
5 (p=0.003) and 10 µg/ml (p<0.001). The measurements of 
ELISA analysis of the groups are presented in γe-1 and com-
parison graphics are presented in Figure 2.

Cytotoxicity
In our CCK-8 assays, we found that the administration of 
different doses of anti PD-L1 antibody did not have a sig-

nificant effect on the proliferation of MDA-MB-231 cells (for 
1 µg/ml p=0.38, for 5 µg/ml p=0.87, for 10 µg/ml p>0.99 
respectively). There was a significant decrease in the pro-
liferation of MDA-MB-231 cells co-cultured with NK cells at 
all doses (for all groups p<0.001). Increasing the anti PD-
L1 antibody dose did not have a significant effect on these 
effects (for 1 µg/ml p>0.99, for 5 µg/ml p>0.99, for 10 µg/
ml p=0.97 respectively). There was no significant change 
in the proliferation of MDA-MB-231 cells in the presence 
of MSCs in co-culture groups without PD-L1 antibody 
(p=0.34) and with 1 µg/ml antibody (p>0.99), however, 
there was a significant decrease at the 5 µg/ml (p=0.01) 
and 10 µg/ml doses (p<0.001). The cytotoxic effects of NK 
cells against MDA-MB-231 cells co-cultured with MSCs did 
not change significantly at the 1 µg/ml (p>0.99) and 5 µg/
ml (p=0.10) dose, but a significant increase occurred at the 
10 µg/ml dose (p<0.001). Optical density measurements of 
the groups obtained from CCK-8 assays are presented in 
Table 1 and comparison graphics are presented in Figure 2.

Discussion
In this study, we observed that anti PD-L1 antibodies sig-
nificantly increase the anti-tumor activity of NK-92 cells on 
MDA-MB-231 cells, and this has a dose-dependent pattern. 
There was an increase in proinflammatory cytokines such 
as IFN-γ and TNF-α consistent with the dose of anti PD-L1 
antibody administered, but a significant decrease in anti-
inflammatory IL-10 levels. The immunosuppressive prop-
erties of MSCs have been well elucidated in the literature. 
It has been reported that MSCs express PD-L1 and in this 
way their immune suppression abilities are increased.[15] 
As expected, in our findings the antitumor activity of NK-
92 cells was significantly reduced in the presence of MSCs. 
However, this suppressive effect produced by MSCs was 

Figure 2. Comparison graphics of IFN-γ , TNF-α, IL-10 and IDO ELISA measurements and CCK-8 optical densities of experiments with different 
doses of anti PD-L1 antibody (without, 1 µg/ml, 5 µg/ml, and 10 µg/ml) added. Data are presented as mean and standard deviation.
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significantly decreased especially at the dose of 10 µg/ml 
anti PD-L1 antibody.

The PD-1 / PD-L1 interaction is a pathway that is particu-
larly involved in the suppression of CD4 and CD8 T lympho-
cytes, and its blocking results in the recovery of the anti-
tumor immune response.[17] However, there are studies in 
the literature showing that NK cells also express PD-1 and 
that the increase in PD-1 positive NK cell frequencies in 
cancer patients is associated with poor prognosis.[18] There 
are different dimensions of anti-tumor activity created by 
anti PD-L1 antibodies in terms of NK cells. Many anti PD-
L1 antibodies used in treatment have the Fc domain. CD16, 
which is intensely expressed in NK cells, is an Fc receptor 
and in this way antibody dependent cellular cytotoxicity 
(ADCC) is triggered. It has been shown that PD-L1 posi-
tive tumor cells are effectively eliminated by NK cells and 
by ADCC in the presence of anti PD-L1 antibodies.[19] An-
other effect of blocking the PD-L1 axis on NK cells is that 
it increases the expression of proinflammatory cytokines. 
Oyer et al. reported that anti PD-L1 antibodies increased 
IFN-γ  and TNF-α expressions of NK cells significantly.[20] In 
our findings, we detected that the IFN-γ and TNF-α expres-
sions of NK-92 cells co-cultured with MDA-MB-231 cells 
were significantly increased, and this was potentiated by 
high anti PD-L1 antibodies (Fig. 2). However, we observed 
that adding MSCs as a third variable to the equation signifi-
cantly suppressed the increase in IFN-γ and TNF-α levels. 

Although this suppression effect caused by MSCs could 
not be completely eliminated, we found that high doses of 
anti-PD-L1 antibodies could significantly reduce this effect.

IL-10, one of the other molecules we evaluated in our study, 
is a strong immunosuppressive cytokine. IL-10 activates 
the STAT3 signaling pathway by interacting with its recep-
tor, IL-10R1. This interaction causes an increase in IL-10 ex-
pression while decreasing the expression of the proinflam-
matory cytokines IFN-γ  and TNF-α.[21] It has been reported 
that excessively activated CD8 T lymphocytes increase IL-
10 expression and thus limit their own activity.[22] In addi-
tion, it has been shown that the cytokines IFN-α, IL-2 and 
IL-15, which we use to activate NK-92 cells, can activate the 
same signal pathway as IL-10, namely STAT3.[23] In our find-
ings, we found that the IL-10 expressions of NK-92 cells that 
we activated with the cytokine cocktail were significantly 
higher than the group co-cultured with MDA cells, and 
in contrast, there were significant increases in IFN-γ and 
TNF-α expressions (Fig. 2). The reason for this increase in IL-
10 expression may be that the cytokine cocktail we applied 
to NK-92 cells simultaneously caused IL-10 secretion. Direct 
interaction with MDA-MB-231 cells may trigger activator 
receptors such as NKG2D, NCRs and DNAM-1 in NK-92 cells, 
leading to an increase in TNF-α and IFN-γ.[24]

Nevertheless, what was more interesting in our findings 
was that IL-10 expression was significantly decreased in ad-
dition to IFN-γ and TNF-α in the presence of MSCs. MSCs 

Table 1. Values obtained from ELISA and CCK-8 measurements

 Without anti PD-L1 1 µg/ml PD-L1 5 µg/ml PD-L1 10 µg/ml PD-L1

NK-92
IFN-g (pg/ml) 660±12.4 655±12.5 659±19.5 664±16.1
TNF-a (pg/ml) 510±4.07 523±8.41 509±6.29 522±3.58
IL-10 (pg/ml) 232±3.16 234±4.04 235±2.09 232±6.03
IDO (pg/ml) 34.6±1.08 32.8±1.38 34.5±1.83 33.8±2.55
NK-92 and MDA-MB-231 Co-culture
IFN-g (pg/ml) 728±15.4 728±7.66 765±19.5 788±10.1
TNF-a (pg/ml) 537±4.69 544±6.49 570±8.68 5974±7.06
IL-10 (pg/ml) 195±1.91 196±2.73 185±2.25 176±1.99
IDO (pg/ml) 40.1±3.32 43.0±3.24 54.6±2.04 58.3±6.75
CCK-8 (OD) 1.02±0.03 1.03±0.05 1.01±0.05 0.96±0.06
NK-92, MDA-MB-231 and MSC Co-culture
IFN-g (pg/ml) 461±9.8 455±7.26 582±10.9 669±6.98
TNF-a (pg/ml) 480±3.47 483±10.5 506±8.28 555±4.59
IL-10 (pg/ml) 170±2.13 170±5.22 157±2.07 144±3.26
IDO (pg/ml) 313±9.66 304±3.37 385±15.0 397±7.89
CCK-8 (OD) 1.36±0.04 1.37±0.03 1.23±0.03 1.10±0.02
MDA-MB-231 cells
CCK-8 (OD) 1.48±0.05 1.37±0.05 1.40±0.08 1.43±0.06
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are known to be powerful immunosuppressive cells. In 
addition to molecules such as IDO, PGE2, IL-10 and TGF-β, 
suppressive surface ligands such as PD-L1 also play a role 
in the emergence of these effects.[13,25] Interestingly, MDA-
MB-231 and MCF-7 breast tumor cells cultured with MSCs 
have been shown to increase the expression of potent 
inhibitory molecules such as PD-L1 and HLA-G.[26] In our 
findings, we observed that there was PD-L1 expression 
in about 50% of MSCs and 15-20% of MDA-MB-231 cells 
(Fig. 1). The presence of MSCs may have caused a relative 
increase in presence of PD-L1, in addition, it may have in-
creased PD-L1 expression in MDA-MB-231 cells. This may 
have resulted in a more efficient suppression in NK-92 cells. 
Additionally, in our findings, we found that there were sig-
nificantly higher IDO levels than other groups in the pres-
ence of MSCs (Fig. 2). IDO is an enzyme that metabolizes 
tryptophan to kynurenine, causing tryptophan starvation 
in lymphocytes and indirect metabolic inhibition.[27] Öz-
demir et al. reported that MSCs co-cultured with MDA-
MB-231 and MCF-7 cells could be the main source of IDO 
in the environment.[26] In accordance with the literature, 
we observed that IDO levels increased only in co-culture 
groups with MSCs. It has been shown that MSCs precondi-
tioned with pro-inflammatory cytokines such as IFN-γ and 
TNF-α have a significant increase in immune cell suppres-
sion properties.[28] It has been shown that MSCs stimulated 
with Toll-like receptor (TLR)3 and TLR9 agonists can sup-
press the anti-tumor effects of NK-92 cells more effectively. 
It has been pointed out that one of the reasons may be that 
TLR agonists simultaneously cause NK-92 activation and 
the increase in cytokines such as IFN-γ and TNF-α stimu-
lates the inhibitory properties of MSCs.[29] Although MSCs 
can provide immunosuppression in different ways, these 
effects were decreased with the anti-PD-L1 antibodies we 
applied and, in a dose-dependent manner. However, addi-
tional combinations such as IDO inhibitors may be required 
for full efficacy (Fig 3).

Conclusion
MSCs are strong immunosuppressive cells that express 
PD-L1, and the PD-1/PD-L1 interaction is critical in the in-
hibition of lymphocytes. In our study, we showed that the 
antitumor activity of NK-92 cells on MDA-MB-231 cells was 
significantly suppressed in the presence of MSCs. However, 
we observed that this effect of MSCs was significantly re-
duced by anti-PD-L1 antibodies, although not completely. 
Our findings suggested that in addition to blocking the 
PD-L1 pathway, inhibition of suppressor molecules such as 
IDO secreted by MSCs could be a more effective approach. 
However, these in vitro data need to be supported by in 
vivo studies.
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